# Difference between revisions of "Backbone Layout"

Line 1: | Line 1: | ||

+ | =Backbone Layout= | ||

===Method=== | ===Method=== | ||

Small-world graphs have characteristically low average distance and thus cause force-directed methods to generate drawings that look like hairballs. | Small-world graphs have characteristically low average distance and thus cause force-directed methods to generate drawings that look like hairballs. |

## Revision as of 07:47, 26 August 2014

# Backbone Layout

### Method

Small-world graphs have characteristically low average distance and thus cause force-directed methods to generate drawings that look like hairballs.

The backbone layout tries to untangle hairball graphs. The method is based on a spanning subgraph that is sparse but connected and consists of strong ties holding together communities.

Strong ties are identified using a measure of embeddedness which is based on a weighted accumulation of triangles in quadrangles.

More detailed background information is provided in

- Arlind Nocaj, Mark Ortmann, and Ulrik Brandes: Untangling Hairballs: From 3 to 14 Degrees of Separation, Proc. 22nd Intl. Symp. Graph Drawing (GD 2014), to appear.

### Complexity

The computation of the embeddedness together with the backbone extraction scales well for large networks with, e.g., millions of edges and nodes.

The asymptotic runtime is for a graph where is the maximum degree of a vertex .

The final layout based on the extracted backbone needs time and memory, which does not scale for very large graphs.