Backbone Layout: Difference between revisions
No edit summary |
No edit summary |
||
Line 22: | Line 22: | ||
=== Asymptotic Complexity === | === Asymptotic Complexity === | ||
The computation of the embeddedness together with the backbone extraction | The computation of the embeddedness together with the backbone extraction scales well for large networks with, e.g., millions of edges and nodes. | ||
The asymptotic runtime is <math> O(|E| \triangle(G))</math> for a graph <math>G=(V,E)</math> where <math>\triangle(G)</math> is the maximum degree of a vertex <math> v\in V</math>. | |||
The final layout based on the extracted backbone needs <math>O(|V|^2</math> time and memory, which does not scale for large graphs. | |||
The final layout based on the extracted backbone needs <math>O(|V|^2</math> time and memory, which does not scale for very large graphs. |
Revision as of 13:26, 25 August 2014
Small-world graphs have characteristically low average distance and thus cause force-directed methods to generate drawings that look like hairballs.
The backbone layout tries to untangle hairball graphs. The method is based on a spanning subgraph that is sparse but connected and consists of strong ties holding together communities.
Strong ties are identified using a measure of embeddedness which is based on a weighted accumulation of triangles in quadrangles.
More detailed background information is provided in
- Arlind Nocaj, Mark Ortmann, and Ulrik Brandes: Untangling Hairballs: From 3 to 14 Degrees of Separation, to appear in Proceedings of the 22nd International Symposium on Graph Drawing (GD 2014).
Asymptotic Complexity
The computation of the embeddedness together with the backbone extraction scales well for large networks with, e.g., millions of edges and nodes.
The asymptotic runtime is for a graph where is the maximum degree of a vertex .
The final layout based on the extracted backbone needs time and memory, which does not scale for very large graphs.